3.5.12 \(\int \frac {\cos ^4(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx\) [412]

3.5.12.1 Optimal result
3.5.12.2 Mathematica [B] (verified)
3.5.12.3 Rubi [A] (verified)
3.5.12.4 Maple [A] (verified)
3.5.12.5 Fricas [A] (verification not implemented)
3.5.12.6 Sympy [B] (verification not implemented)
3.5.12.7 Maxima [B] (verification not implemented)
3.5.12.8 Giac [A] (verification not implemented)
3.5.12.9 Mupad [B] (verification not implemented)

3.5.12.1 Optimal result

Integrand size = 27, antiderivative size = 73 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {x}{8 a}-\frac {\cos ^3(c+d x)}{3 a d}-\frac {\cos (c+d x) \sin (c+d x)}{8 a d}+\frac {\cos ^3(c+d x) \sin (c+d x)}{4 a d} \]

output
-1/8*x/a-1/3*cos(d*x+c)^3/a/d-1/8*cos(d*x+c)*sin(d*x+c)/a/d+1/4*cos(d*x+c) 
^3*sin(d*x+c)/a/d
 
3.5.12.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(219\) vs. \(2(73)=146\).

Time = 1.12 (sec) , antiderivative size = 219, normalized size of antiderivative = 3.00 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {-24 (c-d x) \cos \left (\frac {c}{2}\right )+24 \cos \left (\frac {c}{2}+d x\right )+24 \cos \left (\frac {3 c}{2}+d x\right )+8 \cos \left (\frac {5 c}{2}+3 d x\right )+8 \cos \left (\frac {7 c}{2}+3 d x\right )-3 \cos \left (\frac {7 c}{2}+4 d x\right )+3 \cos \left (\frac {9 c}{2}+4 d x\right )+48 \sin \left (\frac {c}{2}\right )-24 c \sin \left (\frac {c}{2}\right )+24 d x \sin \left (\frac {c}{2}\right )-24 \sin \left (\frac {c}{2}+d x\right )+24 \sin \left (\frac {3 c}{2}+d x\right )-8 \sin \left (\frac {5 c}{2}+3 d x\right )+8 \sin \left (\frac {7 c}{2}+3 d x\right )-3 \sin \left (\frac {7 c}{2}+4 d x\right )-3 \sin \left (\frac {9 c}{2}+4 d x\right )}{192 a d \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right )} \]

input
Integrate[(Cos[c + d*x]^4*Sin[c + d*x])/(a + a*Sin[c + d*x]),x]
 
output
-1/192*(-24*(c - d*x)*Cos[c/2] + 24*Cos[c/2 + d*x] + 24*Cos[(3*c)/2 + d*x] 
 + 8*Cos[(5*c)/2 + 3*d*x] + 8*Cos[(7*c)/2 + 3*d*x] - 3*Cos[(7*c)/2 + 4*d*x 
] + 3*Cos[(9*c)/2 + 4*d*x] + 48*Sin[c/2] - 24*c*Sin[c/2] + 24*d*x*Sin[c/2] 
 - 24*Sin[c/2 + d*x] + 24*Sin[(3*c)/2 + d*x] - 8*Sin[(5*c)/2 + 3*d*x] + 8* 
Sin[(7*c)/2 + 3*d*x] - 3*Sin[(7*c)/2 + 4*d*x] - 3*Sin[(9*c)/2 + 4*d*x])/(a 
*d*(Cos[c/2] + Sin[c/2]))
 
3.5.12.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3318, 3042, 3045, 15, 3048, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin (c+d x) \cos ^4(c+d x)}{a \sin (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x) \cos (c+d x)^4}{a \sin (c+d x)+a}dx\)

\(\Big \downarrow \) 3318

\(\displaystyle \frac {\int \cos ^2(c+d x) \sin (c+d x)dx}{a}-\frac {\int \cos ^2(c+d x) \sin ^2(c+d x)dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \cos (c+d x)^2 \sin (c+d x)dx}{a}-\frac {\int \cos (c+d x)^2 \sin (c+d x)^2dx}{a}\)

\(\Big \downarrow \) 3045

\(\displaystyle -\frac {\int \cos ^2(c+d x)d\cos (c+d x)}{a d}-\frac {\int \cos (c+d x)^2 \sin (c+d x)^2dx}{a}\)

\(\Big \downarrow \) 15

\(\displaystyle -\frac {\int \cos (c+d x)^2 \sin (c+d x)^2dx}{a}-\frac {\cos ^3(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3048

\(\displaystyle -\frac {\frac {1}{4} \int \cos ^2(c+d x)dx-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}}{a}-\frac {\cos ^3(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {1}{4} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}}{a}-\frac {\cos ^3(c+d x)}{3 a d}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {\frac {1}{4} \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}}{a}-\frac {\cos ^3(c+d x)}{3 a d}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {\cos ^3(c+d x)}{3 a d}-\frac {\frac {1}{4} \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )-\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}}{a}\)

input
Int[(Cos[c + d*x]^4*Sin[c + d*x])/(a + a*Sin[c + d*x]),x]
 
output
-1/3*Cos[c + d*x]^3/(a*d) - (-1/4*(Cos[c + d*x]^3*Sin[c + d*x])/d + (x/2 + 
 (Cos[c + d*x]*Sin[c + d*x])/(2*d))/4)/a
 

3.5.12.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3045
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_ 
Symbol] :> Simp[-(a*f)^(-1)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], 
x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && 
 !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3318
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g^2/a   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[g^2/(b*d)   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, 
d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0]
 
3.5.12.4 Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.62

method result size
parallelrisch \(\frac {-12 d x -8 \cos \left (3 d x +3 c \right )-24 \cos \left (d x +c \right )+3 \sin \left (4 d x +4 c \right )-32}{96 d a}\) \(45\)
risch \(-\frac {x}{8 a}-\frac {\cos \left (d x +c \right )}{4 a d}+\frac {\sin \left (4 d x +4 c \right )}{32 d a}-\frac {\cos \left (3 d x +3 c \right )}{12 a d}\) \(56\)
derivativedivides \(\frac {\frac {4 \left (-\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}-\frac {\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {7 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}-\frac {\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {7 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}-\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{16}-\frac {1}{6}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}-\frac {\arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}}{d a}\) \(129\)
default \(\frac {\frac {4 \left (-\frac {\left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}-\frac {\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {7 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}-\frac {\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {7 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}-\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{16}-\frac {1}{6}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}-\frac {\arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}}{d a}\) \(129\)
norman \(\frac {-\frac {\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )}{d a}-\frac {x}{8 a}-\frac {x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a}-\frac {5 x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a}-\frac {5 x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a}-\frac {5 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 a}-\frac {5 x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 a}-\frac {5 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 a}-\frac {5 x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 a}-\frac {5 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a}-\frac {5 x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a}-\frac {x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a}-\frac {x \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a}-\frac {5}{12 a d}+\frac {\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d a}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{6 d a}-\frac {5 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {3 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}+\frac {3 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}+\frac {\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}{6 d a}-\frac {19 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}-\frac {\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )}{6 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{5} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}\) \(399\)

input
int(cos(d*x+c)^4*sin(d*x+c)/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/96*(-12*d*x-8*cos(3*d*x+3*c)-24*cos(d*x+c)+3*sin(4*d*x+4*c)-32)/d/a
 
3.5.12.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.68 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {8 \, \cos \left (d x + c\right )^{3} + 3 \, d x - 3 \, {\left (2 \, \cos \left (d x + c\right )^{3} - \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, a d} \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="fricas")
 
output
-1/24*(8*cos(d*x + c)^3 + 3*d*x - 3*(2*cos(d*x + c)^3 - cos(d*x + c))*sin( 
d*x + c))/(a*d)
 
3.5.12.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1134 vs. \(2 (56) = 112\).

Time = 6.42 (sec) , antiderivative size = 1134, normalized size of antiderivative = 15.53 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)**4*sin(d*x+c)/(a+a*sin(d*x+c)),x)
 
output
Piecewise((-3*d*x*tan(c/2 + d*x/2)**8/(24*a*d*tan(c/2 + d*x/2)**8 + 96*a*d 
*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d*tan(c/2 + d*x/ 
2)**2 + 24*a*d) - 12*d*x*tan(c/2 + d*x/2)**6/(24*a*d*tan(c/2 + d*x/2)**8 + 
 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d*tan(c/2 
 + d*x/2)**2 + 24*a*d) - 18*d*x*tan(c/2 + d*x/2)**4/(24*a*d*tan(c/2 + d*x/ 
2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d* 
tan(c/2 + d*x/2)**2 + 24*a*d) - 12*d*x*tan(c/2 + d*x/2)**2/(24*a*d*tan(c/2 
 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 
96*a*d*tan(c/2 + d*x/2)**2 + 24*a*d) - 3*d*x/(24*a*d*tan(c/2 + d*x/2)**8 + 
 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d*tan(c/2 
 + d*x/2)**2 + 24*a*d) - 6*tan(c/2 + d*x/2)**7/(24*a*d*tan(c/2 + d*x/2)**8 
 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d*tan(c 
/2 + d*x/2)**2 + 24*a*d) - 48*tan(c/2 + d*x/2)**6/(24*a*d*tan(c/2 + d*x/2) 
**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d*ta 
n(c/2 + d*x/2)**2 + 24*a*d) + 42*tan(c/2 + d*x/2)**5/(24*a*d*tan(c/2 + d*x 
/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d 
*tan(c/2 + d*x/2)**2 + 24*a*d) - 48*tan(c/2 + d*x/2)**4/(24*a*d*tan(c/2 + 
d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96* 
a*d*tan(c/2 + d*x/2)**2 + 24*a*d) - 42*tan(c/2 + d*x/2)**3/(24*a*d*tan(c/2 
 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4...
 
3.5.12.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 257 vs. \(2 (65) = 130\).

Time = 0.32 (sec) , antiderivative size = 257, normalized size of antiderivative = 3.52 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {8 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {21 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {24 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {24 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {3 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - 8}{a + \frac {4 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {6 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {4 \, a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {a \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}} - \frac {3 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{12 \, d} \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="maxima")
 
output
1/12*((3*sin(d*x + c)/(cos(d*x + c) + 1) - 8*sin(d*x + c)^2/(cos(d*x + c) 
+ 1)^2 - 21*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 24*sin(d*x + c)^4/(cos(d 
*x + c) + 1)^4 + 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 24*sin(d*x + c)^ 
6/(cos(d*x + c) + 1)^6 - 3*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 8)/(a + 4 
*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 6*a*sin(d*x + c)^4/(cos(d*x + c) 
+ 1)^4 + 4*a*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + a*sin(d*x + c)^8/(cos(d 
*x + c) + 1)^8) - 3*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a)/d
 
3.5.12.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.74 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {3 \, {\left (d x + c\right )}}{a} + \frac {2 \, {\left (3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 21 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 21 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 8 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 8\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{4} a}}{24 \, d} \]

input
integrate(cos(d*x+c)^4*sin(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="giac")
 
output
-1/24*(3*(d*x + c)/a + 2*(3*tan(1/2*d*x + 1/2*c)^7 + 24*tan(1/2*d*x + 1/2* 
c)^6 - 21*tan(1/2*d*x + 1/2*c)^5 + 24*tan(1/2*d*x + 1/2*c)^4 + 21*tan(1/2* 
d*x + 1/2*c)^3 + 8*tan(1/2*d*x + 1/2*c)^2 - 3*tan(1/2*d*x + 1/2*c) + 8)/(( 
tan(1/2*d*x + 1/2*c)^2 + 1)^4*a))/d
 
3.5.12.9 Mupad [B] (verification not implemented)

Time = 9.61 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.59 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {6\,\cos \left (c+d\,x\right )+2\,\cos \left (3\,c+3\,d\,x\right )-\frac {3\,\sin \left (4\,c+4\,d\,x\right )}{4}+3\,d\,x}{24\,a\,d} \]

input
int((cos(c + d*x)^4*sin(c + d*x))/(a + a*sin(c + d*x)),x)
 
output
-(6*cos(c + d*x) + 2*cos(3*c + 3*d*x) - (3*sin(4*c + 4*d*x))/4 + 3*d*x)/(2 
4*a*d)